

Tetrahedron Letters 42 (2001) 9199-9201

TETRAHEDRON LETTERS

3-(2-Pyridyl)-2-pyrazoline derivatives: novel fluorescent probes for Zn²⁺ ion

Pengfei Wang,[†] Nobuko Onozawa-Komatsuzaki, Yuichiro Himeda, Hideki Sugihara, Hironori Arakawa and Kazuyuki Kasuga*

Photoreaction Control Research Center, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Received 20 August 2001; revised 18 October 2001; accepted 19 October 2001

Abstract—Spectroscopic studies revealed that 3-(2-pyridyl)-2-pyrazoline derivatives have rather strong affinity toward divalent transition metal ions, but have almost no interaction with alkali and alkaline-earth metal ions. In the case of the 5-(4-cyanophenyl) derivative, enhancement of the fluorescence intensity was observed upon addition of the Zn^{2+} ion, while most of other transition metal ions caused complete quenching. © 2001 Elsevier Science Ltd. All rights reserved.

1,3,5-Triaryl-2-pyrazolines are well-known fluorescent compounds with high quantum yields and are widely used as whitening or brightening reagents.¹ In addition, these compounds have been utilized as fluorescence probes in some elaborated chemosensors.² In most, such sensors, an acceptor (=ligand) and a fluorophore (= pyrazoline) are covalently linked to form PET systems. On the other hand, the fluorescent 3-(2-pyridyl) analogues³ of triarylpyrazolines themselves can serve as N,N'-type bidentate ligands for metal ions. In these intrinsic fluorescent ligands, the metal ion-binding may affect intramolecular charge transfer and consequently induce spectral changes both in absorbance and emission. The foregoing may be also applicable to the sensing of metal ions.⁴ However, to the best of our knowledge, only a few examples⁵ have been reported on the interactions between pyridylpyrazoline derivatives and metal ions. In this study, we newly synthesized several 1,5diphenyl-3-(2-pyridyl)-2-pyrazoline derivatives **1a**–**d** and investigated their complexation properties with metal ions. In these compounds, *para*-substituents on the 5-phenyl group were introduced in order to modulate the spectroscopic properties of the resulting metal complexes as well as those of ligands.

Pyridylpyrazoline derivatives 1a-d were prepared from the corresponding chalcones according to the reported method⁶ with a slight modification (Scheme 1). Pure products were obtained in moderate yields after recrystallization from ethanol.[‡]

Scheme 1.

Keywords: chelation; fluorescence; pyrazolines; zinc.

^{*} Corresponding author. Fax: +81 298 61 4687; e-mail: k.kasuga@aist.go.jp

[†] Current address: Department of Physics and Material Science, City University of Hong Kong, Tat Chee Ave., Kowloon, Hong Kong, China. [‡] All new compounds gave satisfactory ¹H NMR, MS, ESI-MS, and elementary analysis data.

Binding affinities of pyridylpyrazoline derivatives 1a-d toward divalent transition metal ions, Co²⁺, Ni²⁺, Cu²⁺ and Zn²⁺ were evaluated by UV-vis spectroscopy measurements. Upon addition of these metal ions, the absorption spectrum of each derivative changes in a similar manner as shown in Fig. 1 (1c). The addition of metal ions causes a decrease in optical density of the absorption maximum (360 nm for 1c), which may correspond to the π - π * transitions, with a peak broadening except for the Cu²⁺ ion. In this case, a new absorption band appears. These results indicate that derivatives **1a**-**d** have high binding affinity toward these metal ions. And these distinct changes in the spectra allow us to estimate the stability constants and stoichiometries of the metal complexes of **1a-d** by means of spectrophotometric titration. By contrast, the addition of alkali metal ions, Li⁺, Na⁺, K⁺ and alkaline earth metal ions, Mg²⁺, Ca²⁺ causes almost no change in the absorption spectra of 1a-d. This observation implies rather weak interactions of **1a-d** with alkali and alkaline earth metal ions.

Stability constants for metal complexes of **1** were determined by nonlinear least-squares analysis of the spectrophotometric titration data assuming the formation of 1:1 (ML) and/or 1:2 (ML₂) complexes.⁷ As a result, for Co²⁺, Ni²⁺ and Zn²⁺ ions, the existence of only one species, ML₂ describes the change in optical density. In the case of the Cu²⁺ ion, the coexistence of ML and ML₂ gives good agreement with the titration results. The results of ESI-MS measurements also support the formation of ML_2 complexes for Co^{2+} , Ni^{2+} , Zn^{2+} ions as well as for the Cu^{2+} ion.[§] The obtained stability constants for the complexes of **1a** and **1c** with metal ions are depicted in Table 1. Generally, the Cu^{2+} ion makes complexes with N,N'-type ligands more tightly than other metal ions (Irving–Williams series).⁸ In the present case, however, overall stability constants for Cu^{2+} complexes (ML_2) are smaller than those for the corresponding Zn^{2+} complexes, respectively. This may be due to the inhibition of the formation of a square planar Cu^{2+} complex, which is energetically more favorable, by the 1-phenyl group of the pyrazoline ring of the ligands. The same phenomenon has been observed for Zinquin, a Zn^{2+} specific fluorophore having a sterically-hindered methyl group.⁹

The fluorescence spectra of **1a–c** change significantly upon addition of divalent transition metal ions, while **1d** is not emissive itself by the presence of a strong electron-withdrawing group (NO₂), which induces intramolecular electron transfer.¹⁰ In the cases of Co²⁺, Cu²⁺, Ni²⁺ ions, typical metal-induced fluorescence quenching⁴ is observed for **1a–c**. In addition, for **1a** and **1b**, the fluorescence is also quenched by the Zn²⁺ ion though it is not complete. On the other hand, for **1c**, upon addition of the Zn²⁺ ion, the emission maximum at 479 nm decreases in intensity with the concomitant appearance of a new emission band at around 568 nm. The new band can be assigned to the emission of the

Figure 1. Absorption spectra of 1c ($20 \mu M$) in the presence of various divalent transition metal ions ([M]/[L]=50) in aceto-nitrile.

Table 1. Stability constants (K_s) for the metal complexes of **1a**,c in acetonitrile^a

Figure 2. Fluorescence spectra of **1c** (20 μ M) in the presence of increasing Zn²⁺ concentrations in acetonitrile. Excitation wavelength was 360 nm.

	Zn ²⁺	Ni ²⁺	Co ²⁺	Cu ²⁺		
1a	3.4×10^{11}	5.1×10^9	4.3×10^{10}	$\begin{array}{c} 2.9 \times 10^{4 \mathrm{b}} \\ 3.8 \times 10^{4 \mathrm{b}} \end{array}$	7.9×10^{4c}	
1c	2.9×10^{11}	4.4×10^{10}	1.3×10^{9}		4.1×10^{5c}	

^a M+2L $\rightleftharpoons^{K_s} ML_2$.

 ${}^{\mathrm{b}}\mathrm{M+L} \rightleftharpoons^{K_{\mathrm{s}}}\mathrm{ML}.$

^c ML+L \rightleftharpoons^{K_s} ML₂.

[§] For example, ZnL_2 (L=1c) complex: ESI-MS (*m*/*z*): [M-ClO₄]⁺ calcd. for $C_{42}H_{32}N_8ZnClO_4$, 813.6; found 813.1.

Table 2. Relative fluorescence emission intensities of 1c at 568 nm in the presence of various metal ions in acetonitrile^a

Metal ion	None	Zn^{2+}	Ni ²⁺	Co ²⁺	Cu ²⁺	Cd^{2+}	Li ⁺	Na ⁺	K+	Mg^{2+}	Ca ²⁺
Intensity	15	100	2	2	2	39	16	15	15	16	15

^a The concentration of 1c was 20 μ M. The concentrations of metal ions were 400 μ M. The excitation wavelength was 360 nm.

Zn²⁺ complex because its intensity increases with the increase of Zn^{2+} concentration (Fig. 2). Fluorescence quantum yields of free ligands 1a and 1c and their Zn^{2+} complexes were calculated according to the known method¹¹ using the value of 1,3,5-triphenyl-2pyrazoline¹⁰ as a standard. In the case of 1a, the corresponding Zn²⁺ complex shows considerably low value ($\Phi_f = 0.027$) compared with that of the ligand $(\Phi_{\rm f}=0.830)$. Therefore, it is rather difficult to observe the emission originated from the Zn^{2+} complex. On the other hand, for 1c, the electron-withdrawing group (CN) on the 5-phenyl group decreases the quantum vield of 1c as in the case of 1d. On complexation with Zn^{2+} , this electron transfer effect may be relieved by the increased charge transfer from the 1-phenyl to the 3-pyridyl group. Consequently, quantum yields of the ligand ($\Phi_f = 0.037$) and the complex ($\Phi_f = 0.057$) become comparable. This makes it possible to detect the emission from the Zn^{2+} complex without interference from that of the free ligand 1c.

Although the results of UV-vis measurements indicate that the interactions of 1a-d with alkali and alkaline earth metal ions are weak, the effects of these ions on the fluorescence of 1 were investigated for 1c. The fluorescence spectrum of 1c (20 μ M) does not change by the presence of 4 mM of Li⁺, Ca²⁺, Mg²⁺ although higher concentrations (>50 mM) induce an increase in the fluorescent intensity (5-10%) with the red shift (10–20 nm) of the emission maximum. In addition, high concentrations (0.1 M) of Na⁺ and K⁺ ions have no effect on the fluorescence of 1c. These results suggest that the fluorescences of 1c and its Zn^{2+} complex are unaffected by the presence of large excess amounts of biologically important metal ions, Li⁺, Na⁺, K⁺, Mg²⁺ and Ca^{2+} . Furthermore, the addition of Cd^{2+} , which often behaves like Zn^{2+,4} increases the fluorescence intensity of 1c somewhat, showing good selectivity for Zn²⁺ over Cd²⁺. The effects of added metal ions on the fluorescent intensity of 1c are summarized in Table 2.

In summary, pyridylpyrazoline derivatives, especially **1c**, show specific fluorescent behavior toward the Zn^{2+} ion among divalent transition metal ions, while no interactions exist between **1a–d** and alkali and alkaline earth metal ions. These findings indicate that pyridylpyrazolines **1a–d** are potential compounds for developing efficient fluorescent Zn^{2+} chemosensors,

which are of current interest.^{4,12} In order to improve the Zn^{2+} -selectivity and provide good water-solubility to 1, further studies are underway.

References

- (a) Wagner, A.; Schellhammer, C. W.; Petersen, S. Angew. Chem., Int. Ed. Engl. 1966, 5, 699–704; (b) Dorlars, H.; Schellhammer, C. W.; Schroeder, J. Angew. Chem., Int. Ed. Engl. 1975, 14, 665–679.
- (a) Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; McCoy, C. P.; Sandanayake, K. R. A. S. *Top. Curr. Chem.* 1993, *168*, 223–264; (b) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. *Chem. Rev.* 1997, *97*, 1515–1566.
- (a) Toi, Y.; Kawai, M.; Isagawa, K.; Maruyama, T.; Fushizaki, Y. *Nippon Kagaku Zasshi* 1965, *86*, 1322– 1327; (b) Toi, Y.; Kawai, M.; Isagawa, K.; Fushizaki, Y. *Nippon Kagaku Zasshi* 1967, *88*, 1095–1099; (c) Szücs, L. *Chem. Zvesti* 1969, *23*, 677–686.
- 4. (a) Czarnik, A. W. Acc. Chem. Res. 1994, 27, 302–308;
 (b) Czarnik, A. W. In Fluorescent Chemosensors for Ion and Molecule Recognition. ACS Symposium series 538; Czarnik, A. W., Ed.; American Chemical Society: Washington DC, 1992; pp. 1–9 and pp. 104–129. See also Ref. 2b.
- de Silva et al. utilized the fluorescence quenching of tridentate 1,3-di(2-pyridyl) analogue with Hg²⁺ for constructing molecular logic gates: de Silva, A. P.; Dixon, I. M.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Maxwell, P. R. S.; Rice, T. E. J. Am. Chem. Soc. 1999, 121, 1393– 1394.
- Buryakovskaya, E. G.; Tsukerman, S. V.; Lavrushkin, V. F. Russ. J. Phys. Chem. 1969, 43, 477–480.
- Cazaux, L.; Faher, M.; Lopez, A.; Picard, C.; Tisnes, P. J. Photochem. Photobiol. A: Chem. 1994, 77, 217–225.
- 8. Irving, H.; Mellor, D. H. J. Chem. Soc. 1962, 5222-5237.
- Fahrni, C. J.; O'Halloran, T. V. J. Am. Chem. Soc. 1999, 121, 11448–11458.
- Sahyun, M. R. V.; Crooks, G. P.; Sharma, D. K. Proc. SPIE-Int. Soc. Opt. Eng. 1991, 1436, 125–133.
- Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 5, 991–1024.
- 12. Kimura, E.; Koike, T. *Chem. Soc. Rev.* **1998**, *27*, 179–184 and references cited therein.